3.867 \(\int \frac{x^{14}}{(a+b x^4)^{3/2}} \, dx\)

Optimal. Leaf size=282 \[ \frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{60 b^{15/4} \sqrt{a+b x^4}}+\frac{77 a^2 x \sqrt{a+b x^4}}{30 b^{7/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{30 b^{15/4} \sqrt{a+b x^4}}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}-\frac{77 a x^3 \sqrt{a+b x^4}}{90 b^3}-\frac{x^{11}}{2 b \sqrt{a+b x^4}} \]

[Out]

-x^11/(2*b*Sqrt[a + b*x^4]) - (77*a*x^3*Sqrt[a + b*x^4])/(90*b^3) + (11*x^7*Sqrt[a + b*x^4])/(18*b^2) + (77*a^
2*x*Sqrt[a + b*x^4])/(30*b^(7/2)*(Sqrt[a] + Sqrt[b]*x^2)) - (77*a^(9/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^
4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(30*b^(15/4)*Sqrt[a + b*x^4]) + (
77*a^(9/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/
a^(1/4)], 1/2])/(60*b^(15/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.114551, antiderivative size = 282, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {288, 321, 305, 220, 1196} \[ \frac{77 a^2 x \sqrt{a+b x^4}}{30 b^{7/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{60 b^{15/4} \sqrt{a+b x^4}}-\frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{30 b^{15/4} \sqrt{a+b x^4}}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}-\frac{77 a x^3 \sqrt{a+b x^4}}{90 b^3}-\frac{x^{11}}{2 b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^14/(a + b*x^4)^(3/2),x]

[Out]

-x^11/(2*b*Sqrt[a + b*x^4]) - (77*a*x^3*Sqrt[a + b*x^4])/(90*b^3) + (11*x^7*Sqrt[a + b*x^4])/(18*b^2) + (77*a^
2*x*Sqrt[a + b*x^4])/(30*b^(7/2)*(Sqrt[a] + Sqrt[b]*x^2)) - (77*a^(9/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^
4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(30*b^(15/4)*Sqrt[a + b*x^4]) + (
77*a^(9/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/
a^(1/4)], 1/2])/(60*b^(15/4)*Sqrt[a + b*x^4])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{x^{14}}{\left (a+b x^4\right )^{3/2}} \, dx &=-\frac{x^{11}}{2 b \sqrt{a+b x^4}}+\frac{11 \int \frac{x^{10}}{\sqrt{a+b x^4}} \, dx}{2 b}\\ &=-\frac{x^{11}}{2 b \sqrt{a+b x^4}}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}-\frac{(77 a) \int \frac{x^6}{\sqrt{a+b x^4}} \, dx}{18 b^2}\\ &=-\frac{x^{11}}{2 b \sqrt{a+b x^4}}-\frac{77 a x^3 \sqrt{a+b x^4}}{90 b^3}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}+\frac{\left (77 a^2\right ) \int \frac{x^2}{\sqrt{a+b x^4}} \, dx}{30 b^3}\\ &=-\frac{x^{11}}{2 b \sqrt{a+b x^4}}-\frac{77 a x^3 \sqrt{a+b x^4}}{90 b^3}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}+\frac{\left (77 a^{5/2}\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx}{30 b^{7/2}}-\frac{\left (77 a^{5/2}\right ) \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{30 b^{7/2}}\\ &=-\frac{x^{11}}{2 b \sqrt{a+b x^4}}-\frac{77 a x^3 \sqrt{a+b x^4}}{90 b^3}+\frac{11 x^7 \sqrt{a+b x^4}}{18 b^2}+\frac{77 a^2 x \sqrt{a+b x^4}}{30 b^{7/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{30 b^{15/4} \sqrt{a+b x^4}}+\frac{77 a^{9/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{60 b^{15/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0261316, size = 80, normalized size = 0.28 \[ \frac{x^3 \left (-77 a^2 \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\frac{b x^4}{a}\right )+77 a^2-11 a b x^4+5 b^2 x^8\right )}{45 b^3 \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^14/(a + b*x^4)^(3/2),x]

[Out]

(x^3*(77*a^2 - 11*a*b*x^4 + 5*b^2*x^8 - 77*a^2*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/
a)]))/(45*b^3*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.012, size = 157, normalized size = 0.6 \begin{align*} -{\frac{{x}^{3}{a}^{2}}{2\,{b}^{3}}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{{x}^{7}}{9\,{b}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{16\,a{x}^{3}}{45\,{b}^{3}}\sqrt{b{x}^{4}+a}}+{{\frac{77\,i}{30}}{a}^{{\frac{5}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){b}^{-{\frac{7}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^14/(b*x^4+a)^(3/2),x)

[Out]

-1/2/b^3*x^3*a^2/((x^4+1/b*a)*b)^(1/2)+1/9*x^7*(b*x^4+a)^(1/2)/b^2-16/45*a*x^3*(b*x^4+a)^(1/2)/b^3+77/30*I*a^(
5/2)/b^(7/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+
a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{14}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^14/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^14/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{4} + a} x^{14}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^14/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*x^14/(b^2*x^8 + 2*a*b*x^4 + a^2), x)

________________________________________________________________________________________

Sympy [C]  time = 2.59233, size = 37, normalized size = 0.13 \begin{align*} \frac{x^{15} \Gamma \left (\frac{15}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{15}{4} \\ \frac{19}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{19}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**14/(b*x**4+a)**(3/2),x)

[Out]

x**15*gamma(15/4)*hyper((3/2, 15/4), (19/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(19/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{14}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^14/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate(x^14/(b*x^4 + a)^(3/2), x)